Optimal position control of synchronous reluctance
motor via totally invariant variable structure control

K.-K.8hyu C.-K.Lai and Y.-W Tsai

Abstract: A newly designed optimal control method ig presented, The proposed controlier is
designed via combining classical state feedback control and variable structure control {VSC). This
new method fully matches the merits of the easy design of the linear quadratic (LQ) method and
the strong robustness of the VSC. The presented optimal control niethed is demonstrated on a
synchronous reluctance motor (SynRM). Tt is proved that the synchronous reluctance motor can be
used in position control by the proposed methad, and the designed performance can be easily
obtained regardless of the disturbance and uncertainty. A prototype PC-based SynRM control
system is built to verify the validity of the proposed scheme,

1 Introduction

In the past decade, variable structure control (VSC) stra-
tegies have been the focus of many studies and research
into control of the AC scrvodrive system [1, 2] because the
VSC can offer many propertics, such as inscnsitivity to
patameters variations, cxternal disturbance tejection and
fast dynamic response.

Generally speaking, to design a conventional sliding
mode control (SMC) system, there are two design phases
that must be considered; the reaching phase and the sliding
phase. The robustess of a VSC system resides in ifs
sliding phase, but not in its reaching phase. In other
words, the closed-loop system dynamics arc not comple-
tely tobust all the time. Tn addision, while the designed
techniques for the sliding mode are well established, it is
not easy to shape the dynamics of the reaching phase.
Mareover, the design of the sliding mode is in the reduced-
order system, which is not available and straightforward
for the designer to implement.

From the designer's viewpoint, linear state feedback
condrol is theoretically an attractive method for controlling
a linear plant represented by a state-space model. The
method has the full flexibility of shaping the dynamics of
the closed-loop system to meet the desired specification.
Techniques sueh ag pole placement ot the linecar quadratic
method can be used to achieve the designed aims. Usually,
the motor system can be modelled as a second-order state-
space system where the mechanical velocity and position
are used as the system states. This method seems well
suited to the motor system. However, there are few real
motor systems adopting this method as the controller
design. The main problem is, while the desired system
response can be achieved in the nominal system, it is
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difficult to incorporate robustness considerations into the
design procedure.

However, to consider the optimal performance require-
ment, the linear quadratic (LQ) method is an casy way to
design the control law. The LQ method is based on the
state-space model. To find the control law, the Riceati
equation must be solved, then an optimal feedback gain
will be obtained naturally. Regardless of the regulator
problem or the tracking control problem, control under
this feedback gain will lead to a minimum performance
index. Despite the facts, once the external disturbance and/
or the parameter uncertainty occur, then the performance
may not be obtained just like the stale feedback conirol,
First, the system with parameter uncertainty will result in a
response without matching the predesigned state trajec-
tories, and the intogral of the optimum performance index
cannot be obtained. Secondly, when the system is
subjected to an external disturbance, the systemn states
will not tend to zere, Then, it may be impossible to achieve
3 steady-state error with a control &, which is from the state
feedback control, tending to zero. Therefore, the integral of
the performance index will become infinite when time
approaches infinity. Like the conventional proportional-
plus-integral {P1) conirel, one strategy to force the system
states to zero is to usc integral foedback [3]. On the
conrary, the resultant system is an augmented system the
order of which is increased by one, and the poles are
located at different positions without matching the desired
position. Therefore, the responses will be different from
the originally designed optimal reguirements,

The synchrenous reluctance motor (SynRM) has long
been regarded as inferior to other types of AC machine and
has been used only for variable-licgquency applications
with open-loop control, such as in fibre spinning machines
md pumps. However, compared to other types of AC
machines, synchronous and induction motors, the synchro-
nous reluctance motor has advantages in many applications
because of the simplicity of its construction and control.
TFor example, no slip rings, brushes, DC field windings are
required as for a synchronous motor. No computation of
the slip is needed for high-performance servodrive as
needed for an induction motor, and i1 has high cfliciency
and low cost when compared with most servomotors.
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Recently, because of the advantages mentioned above
and tremendous progress in machine design and power
electronics, many researchers have devoted time to study-
ing the control of synchronous teluctance motors [4-6]. Tn
addition, to consider the torque control for SynRM, four
control methods were iniroduced by Betz ef ol [7].
Different torgque control methods have the attributes
belonging to their definitions and ficlds of application.
To consider power dissipation, Matsuo ef af. [8] presenied
the cuyrent vector control methed to improve the control
efficiency. For specd control, Liu and Lin [9] presented a
speed control scheme by combining sliding mode conttol
and fuzzy control, Even so, there are still a few rescarchers
focusing their aitention on the position control of SynRM
using modern control stratcgies,

In this paper, we have developed an effective optimal
control strategy for the position conirol of the synchronous
reluctance motor using a newly designed method. The
proposed position control scheme, based on the totally
invariant variable siructure conieol [10], can fully match
the above mentioned requirements and solve the problems
of SynRM position conirol. In the conirel scheme, maxi-
mum torgque controel for SynRM is adoepted to generaic the
required torque, and the developed conirol scheme
possesses the full flexibility of statc foedback control in
shaping the closed-loop dynamics using conventional state
(eedback, and the feedback gain is designed, in the same
way ds the designed procedure ol the lincar guadratic
method, by solving the Riceati equation. Furthermere, on
the basis of the newly designed coniroller, the position
control system will keep in the sliding phase at the
beginning and throughout the control process. Thus, the
system is robust and invariant for all the control process,
Because the proposed controller is invariany, the designed
pusition of poles can be conserved to achicve the optimal
performance requirgment whether the perturbations and
uncertainties cxist or not.

2 Linear optimal control method and totally
invariant variable structure control method

Tn thig Section, based on the state-space equation of the
linear system and the introduced performance index, the
general control concepts of the lincar quadratic method
will be described. Thereafter, a modified linecar quadratic
melthod, which is in a sense integral feedback control, will
be introduced to reduce the effect of nonzere steady-state
error caused by the external disturbance. At the same time,
a newly defincd performance index is co-ordinated with
this modified guadeatic method. [n the fellowing Section,
the proposed totally invariant variable structure conirol
(10} will be described. Then, according to the theorem of
the linear quadratic method and the proposed new method,
one will have a controller which not only conserves the
property of the linear quadratic methed but also is inde-
pendent of paramcter uncertainty and external distye-
bances,

2.1 Linear quadratic method

When designing a linear control system to satisfy the
dynamic system rvequirement, pole placement is an
adequate way to mect this objective. If an optimal perfor-
-mance index is also comsidered, the lincar gquadratic
methoed is easily able to determine the desired feedback
gain to satisfy the requirement.

IEE Pioe.-Comtrod Theory Appl., Vol, 147, No. L Januwary 2000

[0 view of the lincar quadratic optimal control for u
single-input system

x=Ax -+ bu ey

where 4 is a # x nmatrix, bisan x 1 vector, xisthe 7 x |
state vector and u is the scalar control, respectively, A
performance index ) (s first defined to be of the form

gy = J:o(xTQx + )t (2)

where r is a positive constant and @ is nonmegative
definite. Via the linear quadratic method, to yield the
optimal control law in an inflinite period, the Riceati
cquation

AP+ PA—r'PORTP+ 0 =0 (3)

must first be solved. Let P be the solutien for cqn. 3 and be
nonnegative symmetric. Thus, the control law to yield a
minimum performance index is as follows:

w= (BT - fTx ()

where k is the feedback gain,

2.2 Moedified linear quadratic method

To consider a control system which is designed accerding
to the linear quadratic method, the steady-state error will
occur if an cxternal disturbance exists. To reducc the
steady-state crror caused by the external disturbance, the
integral feedback [3] is an appropriate alternative. The
integral feedback system has a similar structure to Fig. 1.
This control system is an aygmented system, where an
integrator is inserfed between the original system and the
linear constant controller. To consider this augmented
system, the performance index J is redefined as

Jy = j " Qx + i + it (5)
0

where s is a positive constant. Similar to the preceding
design procedure for the minimum requirement of J), one
should find a control law to minimise the performance
index (eqn. 3) under the constraint of the auwpmented
system (Fig. 1.)

To solve this problem, one defines the new state vector
and control as

]
i linear constant
| santrollar

Fig. 1 Medified £O method with integral feedback
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and the now matrices

oo ] e[l eo[2] o

Now, in terms of the newly defined variables, the modified
system (TFig. 1) and performance index (eqn. 3) can be
written as [ollows:

Jy = Fx, +guy ®)
o0

Jy = j (xf Oyx; + sud)dt C)]
(]

Then similarly to the preceding method to obtain the
optimal control law, the Riccati equation

FTP+PF— s 'Peg’™P+ @ =0 (10)

is solved and the solution P of (egn. 10) is used to
determine the control law i,

= —(s~'g P2 — k¥, (1

2.3 Totally invariant variable structure control
method

It is obvious that the modificd lincar quadratic method has
the system order incressed by one due to the inserted
integrator. This strategy is able to reduce the steady-state
crror to zero, However, it also slows dewn the response
compared to the design of the linear quadratic methed.
Furthermore, for both the lincar quadratic method and the
medified linear quadratic method, once parameter uncer-
tainty is present, the responses will not be consorved as the
neminal condition,

To conserve the reaponses and reject the effects of the
external disturbance and parameter uncertainty, the
proposed totally invariant variable structure controller
will guarantee them. The control concepts of the totally
invariant variable struclure controlier are as follows.

Considering also the single-input lincar system (eqn. 1)
in its nominal condition and expressed in the controllable
canonical form

X =Ax—+ bu (12)
where
0 I | 0
A= : b=
0 0 | 0
—a; —th —dy b

In (cqn. 12), constant b in & is assumed to be positive.
Under the perturbed condition (eqn. 12) still in the
canonical form, it becomes

%= (A4 + Adx + (b + AbYr + (13)

where A4 and Ab ar¢ the perturbations in A and b,
respectively, and d € R” represents the exteranal disturbance.
To waintain the controllability, it is assumed that
{6+ Ab) = 0., (Eqn. 13) can be expressed in the form

k=Ax+bu+p (14}
peR*is the total perturbation given by
p=Mx+Abu+d (15)

Let the system be under linear state feedback control u;,
that is

w, = —k'x, =k kb ... k] 06

30

where & is feedback gain thai can be obtained using a
preferred linear control design technigque, such as pole
placement or the linear quadratic method. The closed-
loop dynamic, in the nominal cendition, is given by

k=[Ad-bp=Ax an
with
0 1 0
A=A—bp"=| T (18)
0o 0 ... 1
—a Oy ... 0,
where
o, = a; + bk, i=1lton (19

Next, consider a scalar functien
t
a(x, 1) =eTfe —x,] — eTA, [ x(t)dt (20)
Jo

Based on {eqn. 17), o(x, H=20 under the nominzl condi-
tion. Therefore, for any chosen state feedback (eqn. 16),
the system possesses a sliding surface o(x, £)=10 on which
the state slides.

It can be casily proved that the perturbed system (eqn.
14), under the condition o(x, £) =0, reserves an equivalent
syatem dynamic as well as the closed-loop dynamic in the
nominal eondition given by {eqn. 17).

When perturbation p exists, the lincar control #;, will not
be able to maintain the sliding mode. Additional control
effort is necessary to keep the states on the sliding surface.
To control the states on the aliding surface under the
perturbed condition, this extra control effort is given as
—q sgn (¢}, then the resultant control is

u=u; —qsan(a) = —k"x — ¢ sgn (7) @n

The added term, —gsgn(g), is the variable structure
contro] for the system and o is its switching function. It
is easy 1o prove that the choice of ¢ in eqn. 21 can be given
as

l n
§=7—=| 2 bl +d, (22)
b 3 i=l

where [Ab| < B, |Aa, + Abky| <& and |d| <d,,. Thus, the
curbing condition mé < 0 is assured. Therafore, the closed-
loop system dynamics for the nominal condition can be
obtained ie. the system will have its activity like ¥=A.x
regardless of the existence of disturbance and uncertainty.
[n view of eqn, 20, it is evident that o =0 at = [ and later,
Thus, a system controlled by the proposed controller is in
the sliding mode in the beginning, i.e. the system can have
robust propertics from the beginning of the control
process.

Remark I1: The choice of ¢ can be set as eqn. 22. However,
if there is no prior cstimation of uncertain parameters of
Aw,, Ab and ¢, an adaptive law [11] can be vsed to estimate
‘plmnx'

Remark 2: Note that totally invariant variable structure
conirol, which is invariant to external disturbance and
parameter uncertainty, is different from the conventional
VSC system. For the conventional VSC, there are two
phages, which indicate the hitting phase and siiding phase,
existing in the control process and only the sliding phase
can be controlled, Above all, the system controlled by
conventienal V8C is a reduced-order system. If the motor
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system ig controlled by the conventional VSC-based
controller, it will not show responses similar to those
designed by pole placement. Furthermore, the robustness
of the uncontrollcd hitting phase cannot be guaranteed.
But, the system controlled by totally invariant V8C is in
the sliding mode in the beginning, the robustness can be
guaranteed throughout the control precess, and thus it is
totally invariant. Specifically, the system’s activity is still a
second-order mode and can be designed by pole placement
or by the linear quadratic method,

3 SynRM modelling

The d—g axcs equations for SynRM are generally described
as 7]

d, . .

Vs = Ln’s Etds + R,s'id.r.- - we[‘q.flqs (23)
d. . .

Vos = L«;.w ;;I bas + R.ﬁ'lrp‘ + wel‘dc'[zfs (24)

where vy, and v, are the d-, g-axis stator voltages, 7, and
I, ore the d-, g-axis stator currents, Ly, and L, ate the -,
g-axis inductances, R is the stator resistance and e, is the
electric frequency. The corrosponding clecteomagnetic
torque production is

3 .
T, = Eg‘(];df - Lq.i‘)'!d." !qv (25)
or
1, = %1'23 {Lgs — Lgp)is sin(28) (26)

where p ig the pole number of the motor; & is the current
angle; i, =+ EEN + iER and

id.v = ‘is CGS(‘S)

ige = iy Sin(8)

The associated electromechanical equations are as follows

d
'er j;m + Bmmm =1, —Tn (27)
d0
d%;” = w, (28)

where (), is the rotor angular displacement, o, is the rotor
velocity, J,, is the inertia moment and B3, is the damping
coefficient,

There are four torque control stralegies for SynRM.
Three of them are constant power angle controls; maxi-
mum torque contral (MTC), maximum power factor
control (MPT'C) and maximum rate of change of torquc
contro]l (MRCTC). The last control strategy, constant
current in inductive axis contral (CCIAC), is a constant
direct current control. In the following, a brief review of
the MTC wmiethod is iniroduced.

For maximum torque control, the current angle is set at
8=45°" Since sin(28)=sin(90°) =1, eqn. 26 becomes

3 ;
Te = E‘g‘ (Lds - Lq.\')‘.% (29)
or
7, = Kri? (30)

where Kp = (3/4)(p/2}L,, — L?,'). The produced torque of
MTC, eqn. 30, is always positive. To match the control
methodology of variable struciure control. two opposite
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forward direction

pasitive torque
‘51

5=45"
A
9 [
d ‘
§=-45°
lsz

negative torque

reverse diraction
Flg. 2 Positive and negative torgue cureent veetor of Maximum Kvgue
contral of SyaRM

control torques are necessary. One is positive to increase
the mator shaft velocity, whereas the other is negative to
decrease it. Therefore, cqn. 30 must be redefined to permit
the production of negative torque. Tf the contreller output is
positive, it implics that the g-axis current vector must be
placed ahead the J-axis 45° in accordance with the rotating
dircction, and we take it as a positive angle. When a
negative torque is required, the power angle is placed
behind the d-uxis 457, ie. the current angle is sct to
d= —45", [n this mode, eqn. 30 can be modified as

1, = —Kpi B1)

The cotresponding concepts are shown in Fig. 2, It can be
understood that if the MTC torque control strategy is used,
on¢ merely has to control the angle and magnitude of the
current veetor to match the desired torque.

As the concepts of torque control for SynRM have
shown, MTC has the property of maximum torque per
amp generation [7] and the convenicnce of deriving the
desired torque. In addition, with consideration of both the
power dissipation and system responses, the MTC method
is adopted as the optimal performance contrel for SynRM
torque control.

4 Optimal SynRM position control by totally
invariant variable structure controller

In this Scction, we show the designed procedure for the
SynRM position control system which is under the conlrol
of the totally invariant variable structure controller,

For position controlied by the LLQ mothod, the system is
described by a state-space model. The corresponding
SynRM dynamic cquations in the state-space model are
expressed in eqn. 32

; 0 1
f?m =14 B, [ Gnr :| +11 T, — 1 1,
M, - T By T .:E

(32)
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and the electromagnetic ¢quation is given as
1, = K72 5in(28) (33)

Tor a desired rotor position 8, one first needs to define the
position error and its derivative as

{x,:Umed

Ay = Wy

(34

Inserting eqns. 33 and 34 into eqn. 32 yislds

G1=0 L] [eman-[2] e

whete a=(#,/1,), b= (Kyp/J,) and ¢ =(7,/J,)). Compared
with ¢qn. 12, the corresponding matrix 4 and vector § are

respectively
A= 0 I] h= 0 (36)
Lo ]t T L

Because the LQ method is adopted, under the torque
control of MTC for SynRM, one can define the control
law as

w, = —kTx = i sin(28) (37)

then the torque equation {(cgn. 33) can be rewritten as
7, = —Ky[k7x]. First, the nominal condition for SynRM
position control will be considered. According to the LQ
method, the positive definite matrix ¢ and positive
constant » are [irst chogen fo constitute the performance
index (eqn. 2). The choice of elements of matrix ¢ and
positive constant » must fake the physical condition for the
motor system into consideration, Usually, the smaller » s,
the larger the control feedback gain and control law will
be, This will accelerate the controlled states toward the set
point. Tor a physical motor control system, the drive
system cufput is always bounded, and in general (k¢
large control law #; would not be reulised. Hence, positive
constant T must choose what is physically realisable. For
the SynRM drive system, in view of the maximum terque
control strategy, the confroller output is the command of
current magnitude, For the sake of the possibility of
physicul realisation, the positive constant r will be
chosen to prevent the required current command being in
the bounded range for a long time.

In the next step, bascd on the ideal model and the
detcrmined matrix @ and positive constant r, the Riceaii
equation (eqn. 3) is solved to find out the positive definite
matrix P and feedback gain & calculated on the basis of
eqh. 4. Substituting the found feedback gain & into the

position control system, the system dynamics can be
described as

1
—bk| = — bkz

where the feedback gain % is defined as &7 =[k;,&].
Owing ta this feedback control, the dynamical system is
a second-order system with a characteristic equation 2 -+
(a+ bky)s + bk =0. The nominal sysiem {eqn, 38) can
slide along the predesigned switching surface (eqn, 20)
under the control (eqn, 37). That is, the switching surface
is always kept at zero throughout the control process and
the performance index {eqn. 2) is minimum.

However, uncertain parameters for matrices 4 and &
exist for the physical system, and cxternal load is also
existent for most applications of drive systems. Under the
influence of uncertainty and disturbance, the perturbed and
uncertain system cannot still preserve the system respense
as the nominal condition, and the system performance
under the control of eqn. 37, which is designed for the
nominal system, is surely degraded. Morcover, the mini-
mum performance index cannot be achieved and the
sliding condition cannot be maintained either. To maintain
the sliding condition and preserve the nominal system
response and performance subjected to the uncertainty
and/or external disturbance, the comtrol law (eqn. 21}
must be taken to ensure the existence of the sliding
mode, Once the SynRM drive system js confrolled by
egn. 21, the perturbed system can be expressed as

&k =(A—bk")x — by sgn(e) +p
=Ax — by sgn(v) +p (39)

szx—kax=|: :|x=Aex (38)

where 4 and b are nominal systems, and all the perturbed
terms arc lumped to the vector p which is pT =[0, p]. As
stated, the extra force —gsgn{a) is used to delete the
effects coming from vector p, ie. through this type of
control, the system trajectories can be mainfained on the
sliding mode whether the perturbation is existent or not,

Matrix A, is the corresponding system matrix under the
state feadback control of the nominal system. The
perturbed system which is under the control of the control
law (eqn. 21) and the switching surface (eqn. 20) will
cxhibit the same characteristics as the nominal system. The
block diagram of the optimal SynRM pesition control
system is shown in Fig, 3,

The designed proccdure of totally invariant variable
structure contre! based on optimal SynRM position control
is summartiscd as follows. First, the LQ method is used to
design the systemn characteristics for SynRM position
control without censidering the uncertainties and distur-
bances. Thus, the feedback gain &, &7 = [k, k], is chosen

Fig. 3 SynRM position contrel system wsing the maximum torque conirol sirategy
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for the nominal system so that it will be exhibited as a
seeond-order system with characteristic equation

52 4 {a + by)s -+ bk, =0 (40)

where g and b are defined in eqn. 35. In this condition, the
system’s poles are located at

—{o - bk 2 _4bk
(o + bly) £ \f (o + bly)” — 4bk, )

$12= 2

and this original system model will yield an optimal
performance index.

Secandly, the switching surface o(x, £) of eqn, 20 can be
decided as follows. Matrix A, is the equivalent system
matrix under stafe feedback condrol for the nominal system
with feedback gain k. Vector ¥ can Le simply decided
through the choice of ¢Th = 1. Because the voctor b of the
SynRM system is #7 =[0, &), vector ¢ can be set as

e’ =10,1/8) (42)

The extra force —g sgn(o) is used to overcome the lumped
uncertain parameters and external disturbances. Therefore,
the magnitude of g should satisfy

q > |Plmax (42}

Thus, the sliding condition, ed <0 if 7 #0, can be always
ensured, and the desired response can aiso be achicved.

6 Simulation results

Simulations are done by the SIMNON sofiwate to verify
the proposed control strategy. The parameters of SynRM
used in the simulation are given in the Appendix (Scction
10), The controlled objective is to drive the motor rotor to
rotate 30°. Three different controllers are used to compare
the conirol performances; controllers based on ths LQ
methed and based on the modified LQ method, and the
proposed totally invariant VSC-based controller. The dyna-
mical equation of the SynRM drive system (ean. 35) with
parameters shown ahove is given as

2] [0 L[ 07 [0
[xz]‘[o fo.z}[xz]Jr[lzﬂs]" [1001-1} (44)

where u = #* sin(28) is adapted.
The nominal system (eqn. 44) under state feedback
control with 7, =0 is

0 1
L —4 45
* [ ~12.75k, —02— 1275k, ]x @

The corresponding characteristic equation is
£ (0.2 412.75k;)s + 12,75k =0 (46)

To decide the feedback gain for the nominal SynRM
position control system, matrix @ and positive constant »
must first be determined. For the systom in eqn. 45, matrix
@ and positive constant » are selected to be of the form

100 0
Q:[G mo},r:()‘l (47)

After substituting eqn. 47 into eqn. 3, the resultant solution
P is substituted into eqn. 4. Then, the feedback gain % is
determined to be the value [31.62,31.68]7.

As rtegards the controller based on the modified LQ
methad, an integral action is going to be added o the
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original system. To decide the feedback gain, matrix @
and positive constant s are chosen to be

100 0 0
0= 0 100 0| s=01 (48)
0 0 0

and the resultant foedback gain veetor is A7 =[31.62,
33.39, 29.18]. The system controlled by the modilied LQ
method based controller has a systein order of three, and it
is expected thai the system will show a slow responsc
differing from that created by the LQ method due to the
iniccted intogral action, Of course, the added integral
action has the ability to reduce the steady-statc error to
zero, and this ability is superior to the controller without
integral action.

To consider the system design via the proposed totally
invariant variable structiure control based controller, it
prescrves the fecdback gain obtained at the design stage
of the LQ method. In addition, an auxiliary switching
surface o(x, £)=c"[x — xy] +4, [xdr and an exira force
—q sgnle} are also added to the control system to build the
control scheme of an invariant control system. Thus, the
design fiexibility on the response requirement is as casy as
for the LQ method. Above all, the proposed new method
has the ability to reject the infiuences resulting from the
external disturbance and parameter uncertainty, but not for
the controller based on the LQ method. In the following,
we show the control effects by simulation,

Simulated results for the nominal system are presented
in Fig, 4, which shows the position responses for the three
different controllers. Owing to the added integral action,
the response trajectory shown by the modified LQ methed
with integral fecdback is different from the responscs
controlled by the other two controllers, and the other twa
are identical. This means that the trajectory controlled by
the totally invariant. VSC is totally matched to the nominal
system, and this is what is desired. From Fig, 4, it is
cvident that if one wants the system contrelled by the
maodificd LQ control with intcgral feedback to have a
response similar to that from the LQ method, then some
trial-and-grror procedures may be nceded for the medified
L method, but it is not necessary for the proposed new
method to reach the goals set.

The effects resulting from external disturbances and
uncertain parameters are given in Fig. 5, In these simulated
results, a 1.0 Nm load is suddenly added to the position

0.6p

rad

.

8 10

time. s

Fig. & Simuluted resuits of SynRM position control system without
addding load
{ip 1.Q methed and wotally invarlant V8C method, (i) modified LQ method
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Fig. 5 Simudated resubts of SynRM position confrol systeni parameter
uncertaimy AJ,, = 0.04 Nmss? added load 1,0 Nm at time 5 5
(1) LQ method, (i) modified L) method, (i) totally invadant ¥SC method

control system at {ime 5s from the beginning, and an
uncertain parameter change of J,, from 0.01-0.05Nm/s? is
assumed. Tt is obvious that the position responses show a
steady-state error for the controller designed by the LQ
method without integral action, but the steady-state error is
nyll for the system based on the modified LQ method
owing to the integral action. Beside the fact that the steady-
state error is reduced to zere, the system is still affccted by
the disturbance at the instant the disturbance is added.
Looking at the response controlled by the proposed new
method, which has an appropriate extra control force ¢, the
system response is independent of the disturbance as Tig, 5
shows, Above all, the responses are the same as the
nominal system response before and after the load is
added. This proves that the controlled system is invariant
to the disturbance,

It is important to consider the hitting condition of the
sliding mode control. As the introduction for the totally
invariant variable structure control has indicated, system
confrolled by this new method directly goes into the sliding
phase. Tt mcans that the system is robust lasting for the
control process. To verify this property, a 1.ONm load is
suddenly added at the instant of the start of control and
then removed at time 6s. Fig. 6 shows the results of this
control. The two controllers, based on the LG method and

1.0|—

0.3

(IJII) M

0.6 L .
0 2 4 ¢} 8 10
timg, &

Fig. 6 Simulated results of SynBM position control svstem load added at
time 0 &, removed at fmo 6 &

1) LQ method, (Y modified L.Q method, (1) totally invariant VSC methad
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the modifiecd LQ method, have the worse pogition
responses at these two critical times during which the
load is added and removed. However, the system controlled
by the proposed new method demonsirales an excellent
position response whether the load is added or removed.
As the meaning of ‘totally invariant® is implied, the system
controlled by this new method ¢ompletely matches the
designed nominal system response which is simply deter-
mined and designed by the LQ method, and is independent
of the external load.

6 Experimental setup and results

6.1 Experimenial setup

To practically cvaluate the actval performance of the
proposed control scheme, a protolype PC-based synchro-
nous reluctance motor position control system was built
and tested. The realised system is composed of a Pentium
BPC, a 12 bit D/A converter, a 12 bit A/D converter, a
1.5 Hp synchronous rcluctance motor and a hysteresis
current controlled inverter. The position control algorithms
are implemented by a Pentium-166 PC. The position
signals are sensed by a 2000 pulse/rev encoder and arg
fed back to the PC through a 16 bit up/down counter. The
corresponding mechanical veloeily is compuied in the PC.
To test the featurc of the proposed control scheme, a
controlled external load disturbance is needed. The
SynRM is connected with a brushless DC motor such
that a controlled counter torque can be directly added to
the SynRM. The main program for managing data input
and output is written by the ‘86 series assembly language
and the position control strategies for the three control
methods is developed in the mathematical coprocessor
language of “387. The experimental data were cellected
in the PC, processed and printed out throngh the MATLAB
software. The block diagram of this experimental system is
shown in Fig. 7.

6.2 Results

To show the validity and effectivencss of the proposed
control methed, the same position control objects as the
simulation is adopted, i.c. a 30° rotor displacement is
assomed, and the feedback gain for the medified LQ
method is sct to be [31, 33, 26)7. However, feedback
gain k=[31, 3177 is sot for both the LQ mothed and the
proposed totally invariant variable structure controller,
Three conditions all similar to the Section 5 are, respec-
tively, taken into account and executed, and their results are
shown and explained in the following.

Fig. 8 shows the position responses for these three
controllers in which the external load is absent. In Fig. §,
trace (1) is plotted under the LQ method, Due to the motor
uncertain parameters, friction and actuator dead band, etc.
the motar system controlled by this simple method will
result in a steady-state error. Trace (2) is the responsc
controlled by the modified LQ method. Owing to the
integral action, it exhibits a zere steady-siate crror, and
shows a slower rising response compared to trace (3, the
response caused by the proposed new cenfroller. To
compare the thirce trajectories with the simulated resnlts
in Fig. 4 for the nominal condition, very matched results
besides the results caused by the LQ method are shown in
Fig. 8, which is affected by lhe uncertainty and is not
considered in the simulation. It is obvious that the desired
responses can be easily obtained by the proposed new
controller whether the uncertainty exists or not.
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Fig. 7 PC_I66-based SynRM pasition control systent

(i}

Q 2 4 6 3} 10
tims, 8

Fig. 8 Experimental results of SynRM position control svstem withous
adding load
(1) 1.0 method, (i) modified 1.0Q method, (i} totally invardant VSC methed

Load effcets of these three control methods are shown in
Figs. 9 and 10, As in the sctting of the simulations, a 1.0
Nm load is suddenly injected to the position system at time
5s. Fig. 9 shows the responses controlled by the L.Q
method; the LQ method is based on the nominal system,
and once the extornal disturbance is presented, the steady-
state error will outcome as the trajectory regardless of the
existence of uncertain parameters. This proves that the

05 | +———— adding load

0.4

0.3

rad

orl ‘ , , , ,
0

2 4 6 8 10
time, 5
Fig. 9 Experimental results of SynRM pasition conirol system adding
load 1.0Nw af fime 5%
LQ method
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poor robust properiies of the LQ method will restrict the
field of application. In Tig, 10, the position respenses
controlled by the modified LQ method arc shown. As
expected, due to the integral action, the steady-stale error
can be reduced to zero. However, the responsc trajectory at
titne 3 s is poor compared to the LQ method, Tig. 11 shows
the responses controlled by the propesed new controller. A
proper choice of extra force can cancel the effects arising
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041
adding load
02 -

Q
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B 04

ol
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_1 4 L L L 1 _—
[+ 2 4 6 8 10
time, s

Fig. 10 Experimental results of SynRM position conteol system adding
tera 1.ONm at time 5x
modified LQ method
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Fig. 11 Experimenial results of SvnRM position control system odding
fovad LONm ar time 55
totally invariant V8C melhod
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Fig. 12  Experimental vesufts of SynRM position control system foad
added at time 05, removed at time 85
{£) LQ method, (if) modified LQ method, (Hi) totally invariant YS8C method

from the external load, and the responses completely match
thase desired,

As regards the problem of the hitting phase for variable
structure contrel, a lead 1.0 Nm will be added to the
experimental system by the brushless DC maotor at the
starting instant of the experimental process and will be
removed at time 63 to check the invariant property for the
proposed controller. This condition is also applied to the
other two control methods to evaluate the performance,
There are three traces in Fig. 12 demonstrating these
results. [n Fig. 12, the traces (1) and (2), which are the
resulis from the LO method and the modified LQ method,
respectively, are much affected by the external load at the
instants when the load is added and removed. Above all,
for the sake of removing the steady-state ervor, the modi-
fied L.Q method has a more serious undershoot and over-
shoot as compared with the LQ method. These ¢ffects {rom
the load do not occwr for the condition controlled by totally
invariant VSC. Tn particular, the system is in the sliding
phase throughout the control process, and completely
overcomes the effects resulting from the external distur-
bance and preserves the desired responses as does trace (3).

7 Conclusions

In this paper, an optimal control scheme is developed for
synchronous reluctance motor position control based on
the totally invariant VSC. The proposed optimal controller
as well as the control scheme, has been demonstrated to be
useful in the application of mator position control. 1t shows
that the designed control system fully satisfies the designed
requirements whether the uncertainties and disturbances
are present or not. The effectiveness of the proposed
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optimal controf scheme and its application ta SynRM
position control have been demonstrated and verified by
both simulation and experiment.
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10 Appendix

Motor Data;

rated power =1120W
rated voltage =230V
rated current =66A
direct inductance L, = 135mH
quadrature inductance L, = 50mll
stator resistance R, =091Q

inertia J,, = 0.01 Nmvsec?
vigeous coefficient B,, = 0.002 Nm/sec
rated speed = 1R0Drpm
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